52 research outputs found

    Influence of shading on biological motion perception: illusion and model

    Get PDF
    Fedorov L, Giese MA. Shading cues in the perception of biological motion: a neural model and a new illusion. Perception. 2015;44(Suppl. 1):177

    Lighting-from-above prior in biological motion perception

    Get PDF
    Fedorov LA, Dijkstra TMH, Giese MA. Lighting-from-above prior in biological motion perception. Scientific Reports. 2018;8(1): 1507.The visual system is able to recognize body motion from impoverished stimuli. This requires combining stimulus information with visual priors. We present a new visual illusion showing that one of these priors is the assumption that bodies are typically illuminated from above. A change of illumination direction from above to below flips the perceived locomotion direction of a biological motion stimulus. Control experiments show that the underlying mechanism is different from shape-from-shading and directly combines information about body motion with a lighting-from-above prior. We further show that the illusion is critically dependent on the intrinsic luminance gradients of the most mobile parts of the moving body. We present a neural model with physiologically plausible mechanisms that accounts for the illusion and shows how the illumination prior might be encoded within the visual pathway. Our experiments demonstrate, for the first time, a direct influence of illumination priors in high-level motion vision

    Potentially toxic elements (PTE) in soils on the megaprofile Eastern Donbass – Azov sea

    Get PDF
    An expedition was carried out to take soil samples of Eastern Donbass and other districts of the Rostov region. The main goal was to study the distribution of potentially toxic elements (PTE) in soils. The total content of mineral components in solid-phase samples was determined by using the X-ray fluorescence method. It was found that, according to the average concentrations, PTE`s line up in the following series: Fe>Mn>Zn>Cr>V>Cu>Ni>Pb>Co. The contents of Zn and Cu in the soil were compared by seasons. It was determined that PTE concentrations in the upper layer of soils were higher in winter than in summer. Geochemical spectra were constructed. They demonstrated that the concentration Clarks of Cr, Cu, Zn, Co, Pb exceeded the Clarks of these elements in the Earth’s crust. Against this background, Pb stands out with contrast, the concentration in the soil of which exceeds those in the earth’s crust by 2.8 times. The tightness of the relationship between the content of PTE in soil samples was calculated, which turned out to be a high straight line

    Electrophysical Characteristics of a Polymer Composite Based on Ultrahigh Molecular Weight Polyethylene with CuO Nanoparticles

    Get PDF
    Методом импедансной спектроскопии исследованы электрофизические свойства композитного материала на основе сверхвысокомолекулярного полиэтилена с ограниченной массовой концентрацией 0,5 мас.% оксида меди CuO в диапазоне частот от 102 до 108 Гц. Предполагается, что введение в состав полимера малых концентраций наночастиц способствует более равномерному их осаждению на поверхностях полимерных гранул. Это позволяет в процессе тестирования таких образцов выявить наиболее вероятные механизмы их поляризации и протекания электрического тока в относительно однородном ансамбле наночастиц в полимерной матрице. Установлено, что внедряемые в полимерную матрицу наночастицы незначительно влияют на процессы электрической поляризации, но приводят к появлению частотно-зависимой проводимости в широком диапазоне частот. Этот процесс сопровождается существенным возрастанием диэлектрических потерь. Электрофизические характеристики полученных композитов обсуждаются с учётом переноса электрических зарядов (ионов или электронов) как по внутренней, так и по поверхностной структуре наночастиц CuOThe electrophysical properties of a composite material based on ultrahigh molecular weight polyethylene with a limited mass concentration of 0.5 wt% copper oxide CuO in the frequency range from 102 to 108 Hz were studied by impedance spectroscopy. It is assumed that the introduction of low concentrations of nanoparticles into the polymer composition contributes to their more uniform deposition on the surfaces of polymer granules. This makes it possible to reveal the most probable mechanisms of their polarization and the flow of electric current in a relatively homogeneous ensemble of nanoparticles in a polymer matrix during testing of such samples. It has been established that nanoparticles introduced into the polymer matrix have little effect on the processes of electric polarization, but lead to the appearance of frequency-dependent conductivity in a wide frequency range. This process is accompanied by a significant increase in dielectric losses. The electrophysical characteristics of the resulting composites are discussed taking into account the transfer of electric charges (ions or electrons) both along the internal and surface structures of CuO nanoparticle

    Topological doping and the stability of stripe phases

    Full text link
    We analyze the properties of a general Ginzburg-Landau free energy with competing order parameters, long-range interactions, and global constraints (e.g., a fixed value of a total ``charge'') to address the physics of stripe phases in underdoped high-Tc and related materials. For a local free energy limited to quadratic terms of the gradient expansion, only uniform or phase-separated configurations are thermodynamically stable. ``Stripe'' or other non-uniform phases can be stabilized by long-range forces, but can only have non-topological (in-phase) domain walls where the components of the antiferromagnetic order parameter never change sign, and the periods of charge and spin density waves coincide. The antiphase domain walls observed experimentally require physics on an intermediate lengthscale, and they are absent from a model that involves only long-distance physics. Dense stripe phases can be stable even in the absence of long-range forces, but domain walls always attract at large distances, i.e., there is a ubiquitous tendency to phase separation at small doping. The implications for the phase diagram of underdoped cuprates are discussed.Comment: 18 two-column pages, 2 figures, revtex+eps

    Observational study of pimecrolimus 1% cream for prevention of transcutaneous sensitization in children with atopic dermatitis during their first year of life

    Get PDF
    IntroductionEpidermal barrier dysfunction in children with atopic dermatitis can cause transcutaneous sensitization to allergens and allergic diseases. We evaluated the effectiveness of an early-intervention algorithm for atopic dermatitis treatment, utilizing pimecrolimus for long-term maintenance therapy, in reducing transcutaneous sensitization in infants.MethodThis was a single-center cohort observational study that enrolled children aged 1-4 months with family history of allergic diseases, moderate-to-severe atopic dermatitis, and sensitization to ≥ 1 of the investigated allergens. Patients who sought medical attention at atopic dermatitis onset (within 10 days) were group 1 “baseline therapy with topical glucocorticoids with subsequent transition to pimecrolimus as maintenance therapy”; patients who sought medical attention later were group 2 “baseline and maintenance therapy with topical glucocorticoids, without subsequent use of pimecrolimus”. Sensitization class and level of allergen-specific immunoglobulin E were determined at baseline, and 6 and 12 months of age. Atopic dermatitis severity was evaluated using the Eczema Area and Severity Index score at baseline and 6, 9 and 12 months of age.ResultsFifty-six and 52 patients were enrolled in groups 1 and 2, respectively. Compared with group 2, group 1 demonstrated a lower level of sensitization to cow's milk protein, egg white and house dust mite allergen at 6 and 12 months of age, and a more pronounced decrease in atopic dermatitis severity at 6, 9 and 12 months of age. No adverse events occurred.DiscussionThe pimecrolimus-containing algorithm was effective in treating atopic dermatitis and prophylaxis of early forms of allergic diseases in infants.Trial registrationhttps://clinicaltrials.gov/NCT04900948, retrospectively registered, 25 May 2021
    corecore